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Background:WTAP is a ubiquitously expressed nuclear protein that is required formammalian early embryo development
and cell cycle progression.
Results:WTAP forms a complex with several splicing regulators.
Conclusion:WTAP regulates both the cell cycle and alternative splicing by the formation of a protein complex.
Significance: Characterization of this protein complex will help to elucidate the critically important function of WTAP in
alternative splicing and cell proliferation.

Wilms’ tumor 1-associating protein (WTAP) is a putative
splicing regulator that is thought to be required for cell cycle
progression through the stabilization of cyclin A2 mRNA and
mammalian early embryo development. To further understand
how WTAP acts in the context of the cellular machinery, we
identified its interactingproteins inhumanumbilical vein endo-
thelial cells and HeLa cells using shotgun proteomics. Here we
show that WTAP forms a novel protein complex including
Hakai, Virilizer homolog, KIAA0853, RBM15, the arginine/
serine-rich domain-containing proteins BCLAF1 andTHRAP3,
and certain general splicing regulators, most of which have
reported roles in post-transcriptional regulation. The depletion
of these respective components of the complex resulted in
reduced cell proliferation along with G2/M accumulation. Dou-
ble knockdown of the serine/arginine-rich (SR)-like proteins
BCLAF1 and THRAP3 by siRNA resulted in a decrease in the
nuclear speckle localization of WTAP, whereas the nuclear
speckles were intact. Furthermore, we found that the WTAP
complex regulates alternative splicing of theWTAP pre-mRNA
by promoting the production of a truncated isoform, leading to
a change in WTAP protein expression. Collectively, these find-
ings show that the WTAP complex is a novel component of the
RNA processing machinery, implying an important role in both
posttranscriptional control and cell cycle regulation.

Alternative splicing is the process by whichmultiple mRNAs
are obtained from a single gene, thereby substantially increas-
ing both protein diversity and complexity. Almost all of the
transcripts of genes encoding multiple exons are alternatively
spliced, and strict patterns of alternative splicing are critically
important for health and normal development (1–3). The con-

cept of alternative splicing as amajor controller of gene expres-
sionwas largely established on the basis of genetic studies of the
Drosophila sex determination pathway, where female-specific
expression of the RNA-binding protein SXL (sex-lethal) regu-
lates the alternative splicing of Sxl, transformer, and msl-2
(male-specific-lethal 2) pre-mRNA, which control sex-specific
alternative splicing and/or translation of the genes responsible
for sexual differentiation and behavior (4–8). Genetic analyses
have revealed that three additional genes are required for
female-specific alternative splicing of Sxl: snf (sans fille) (9), vir
(virilizer) (10), and fl(2)d (11). Previous studies with FL(2)D
(female lethal d) antibodies showed the physical interaction of
FL(2)D with SXL (12, 13), VIR (12), Snf, U2AF, U2A50, and
U2AF38 (13) in embryo nuclear extracts, suggesting that
FL(2)D may act at an early step in the SXL-dependent regula-
tion of alternative splicing.
Wilms’ tumor 1-associating protein (WTAP),2 amammalian

homologue of fl(2)d, was identified as a protein that specifically
interacts with Wilms’ tumor 1 (WT1) in both in vitro and in
vivo assays (14).WTAPandWT1are present together through-
out the nucleoplasm as well as in speckles and colocalize in part
with splicing factors (14). In addition,WTAP has been found in
functional human spliceosomes (15). Other proteomic studies
have also isolatedWTAP as a component of the interchromatin
granule clusters that correspond to nuclear speckles, where a
variety of proteins involved in gene expression, such as tran-
scription factors and splicing factors, are assembled, modified
and sorted (16). Thus, WTAP is considered to have an evolu-
tionarily conserved role in the regulation of splicing in mam-
malian cells. However, the detailedmolecularmechanism is not
well understood, although its essential role has been established
in mouse early embryo development and cell cycle regulation
(17, 18).
We previously reported thatWTAP is required for G2/M cell
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and is vital for early mouse development (17). WTAP stabilizes
cyclin A2mRNA through the 3�-UTR sequence, and a suppres-
sion of WTAP expression by siRNA resulted in G2 phase accu-
mulation in HUVECs and human neonatal dermal fibroblasts.
On the other hand, Small et al. (19, 20) reported that WTAP
inhibits SMC proliferation and activates apoptosis bymodulat-
ing the alternative splicing of the apoptosis regulator survivin.
In addition, recent studies have shown that WTAP is overex-
pressed in glioblastoma (21) and cholangiocarcinoma (22) and
promotes the migration and invasion of these cancer cells with
an effect on cell proliferation under a condition of 1% FBS. The
cell type-specific effect of WTAP on cell proliferation suggests
a sensitive dependence on the cellular context, such as the req-
uisite presence of certain binding partners.
In thework presented here, we generated anti-WTAPmono-

clonal antibodies and identified the proteins that interact with
WTAP using shotgun proteomics. The components of the
WTAP complex are enriched in proteins that are involved in
post-transcriptional regulation, such as pre-mRNA splicing,
mRNA stabilization, polyadenylation, and/or mRNA
export. Among them, double knockdown of the SR-like pro-
teins BCLAF1 (BCL2-associated transcription factor 1) and
THRAP3 (thyroid hormone receptor-associated protein 3)
resulted in a decrease in the speckle localization of WTAP,
whereas the nuclear speckles were intact. Depletion of the
major components of the complex, such as Virilizer homolog,
KIAA0853, BCLAF1/THRAP3, Hakai, and RBM15 (RNA-
binding motif protein 15) resulted in reduced cell proliferation
with G2 phase accumulation. Moreover, we found that the
WTAP complex regulates alternative splicing of the WTAP
pre-mRNA and, thereby, the expression of full-length WTAP
protein. Taken together, our findings suggest thatWTAP local-
izes to nuclear speckles through the interaction of BCLAF1 or
THRAP3 and thus takes part in posttranscriptional regulation.

EXPERIMENTAL PROCEDURES

Cell Culture—HUVECs (Lonza) were cultured in EGM2
medium (culture medium supplemented with growth factors)
(Lonza) and used within the first six passages. HeLa and
HEK293T cells were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum.
Antibodies—The expressed GST-full-length human WTAP

protein (396 amino acids (aa)) was purified on glutathione-aga-
rose beads (Sigma) and injected into BALB/c mice to produce
the monoclonal antibodies H1122 and H1137. The Y6828
monoclonal antibody against the human WTAP N terminus
was raised using a baculoviral display system, as described pre-
viously (23). Monoclonal antibodies for Virilizer (Y1639, aa
1421–1480 were used as the immunogen), Hakai (Y6048, aa
430–491), and RBM15 (Z9701, aa 430–491) were also gener-
ated. Polyclonal anti-humanWTAPantibodies raised in rabbits
were used for immunoblotting (17). The following antibodies
were purchased and used: BCLAF1 (A300-608A, Bethyl),
THRAP3 (A300-956A, Bethyl), Virilizer (A302-124A, Bethyl),
KIAA0853 (ab70802, Abcam), Hakai (ARP39623_T100, Aviva
Systems Biology), RBM15 (ab70549, Abcam), V5 (R960-25,
Invitrogen),�-tublin (T5168, Sigma), and SC35 (S4045, Sigma).

Immunopurification of theWTAPComplexes from theWhole
Cell Lysate of HUVEC, HEK293, and HeLa Cells—Cells were
grown to 75–80% confluence in a 150-mmdish, harvested, sus-
pended in 1 ml of lysis buffer (20 mM HEPES (pH 7.9), at 4 °C,
10% glycerol, 250 mM KCl, 0.2 mM EDTA, 0.1% Nonidet P-40,
0.2 mM PMSF) with protease inhibitors (Roche Applied Sci-
ence) and 50 units of Benzonase (Novagen), and then incubated
on ice for 30 min. After centrifugation for 30 min at 12,000 � g
at 4 °C, the supernatant was frozen with liquid nitrogen and
stored at �80 °C as the cell lysate. Immunopurification was
performed with 2 �g of antibody-cross-linked Dynabeads pro-
tein G (Invitrogen), as described previously (24).
Cross-linking and Immunopurification—HeLa cells were

cross-linked with 1% paraformaldehyde for 10 min. After neu-
tralization with 0.2 M glycine, cells were collected, resuspended
in SDS lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 1% SDS, 1
mM EDTA (pH 8.0), RNase inhibitor, protease inhibitor mix-
ture), and fragmentedwith a sonicator (Sonifier 250, Branson; 4
min, 60% duty, output level 4). The sonicated solution was
diluted with 3 volumes of dilution buffer (20 mM Tris-HCl (pH
8.0), 150mMNaCl, 1mMEDTA, 1%TritonX-100) andwas used
for immunoprecipitation with the H1122 antibody-conjugated
magnetic beads. The immunoprecipitates were eluted in elu-
tion buffer (50mMTris-HCl (pH 8.0), 10mMEDTA, 1% SDS) at
65 °C for 15min and then concentrated with methanol/chloro-
form, washed with ice-cold acetone, and dried.
Liquid Chromatography-Tandem Mass Spectrometry (LC/

MS/MS)—The immunopurified (IP) samples were subjected to
in-solution trypsin digestion followed by LC/MS/MS using an
LTQOrbitrapXLETDmass spectrometer (Thermo Scientific),
as described previously (25). All of the MS/MS samples were
analyzed using Mascot (version 2.4.0; Matrix Science, London,
UK).Mascot was set up to search against the human Swiss-Prot
database assuming a digestion with trypsin. The fragment and
parent ionmass toleranceswere 0.8Da and 3 ppm, respectively.
Three missed cleavages were allowed. The analysis of the data
was carried out with Scaffold software (version 3; Proteome
Software Inc., Portland, OR). Peptide identifications were only
accepted if they could be established at �95.0% probability.
Generation of the Hakai Expression Vector and Stable Cell

Lines—The Hakai coding sequence was subcloned into a
pCMV2-FLAG vector (Sigma). Hakai deletion mutants for the
RING finger and phosphotyrosine binding region were con-
structed bymutagenesis. For stable cell line generation, we used
a Hakai truncated mutant (aa 1–417) having a V5 sequence at
the C terminus (Hakai-V5), which can interact with WTAP,
because full-length Hakai was not sufficiently expressed. A
RING finger deletion mutant (Hakai-delRING-V5) was also
constructed using mutagenesis. Dox-inducible HEK293 stable
cells expressing Hakai-V5 and Hakai-delRING-V5 were gener-
ated using the Flp-InTM T-RExTM core kit (Invitrogen) accord-
ing to the manufacturer’s protocol. 100 ng/ml doxycycline (BD
Biosciences) was used for the induction.
siRNA Transfection—siRNAs against WTAP, Virilizer,

BCLAF1, THRAP3, KIAA0853, Hakai, and RBM15 as well as
negative control siRNAwere purchased fromAmbion (s18433,
s24832, s18875, s19360, s23010, s36537, and s224626, respec-
tively). These siRNAs were transfected with Lipofectamine
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2000 RNAi MAX (Invitrogen) according to the manufacturer’s
protocol.
Fluorescence Image Analysis—Cells were fixed with 4% (w/v)

paraformaldehyde in PBS for 5 min, permeabilized with 0.5%
(v/v) Triton X-100 in PBS for 5 min on ice, blocked with PBS
containing 10% BlockAce (Yukijirushi, Japan), and incubated
with the primary antibodies against WTAP (1:200; rabbit poly-
clonal antibody, 1:100; Y6828), SC-35 (1:2000; S4045, Sigma),
BCLAF1 (1:100; A300-608A, Bethyl), THRAP3 (1:200; A300-
956A, Bethyl), Virilizer (1:250; A302-124A, Bethyl), KIAA0853
(1:100; ab70802, Abcam), Hakai (1:80; ARP39623_T100, Aviva
Systems Biology), and RBM15 (1:80; ab70549, Abcam) for 30
min at room temperature. Alexa Fluor 488 anti-mouse IgG
(1:500; Invitrogen) and Alexa Fluor 594 anti-rabbit IgG (1:500;
Invitrogen) were used as secondary antibodies. Cells were
mounted in Prolong Gold Antifade Reagent (Invitrogen) with
DAPI nuclear staining except for the immunofluorescence of
Hakai-WT-V5 and Hakai-delRING-V5, where TO-pro3 was
used for nuclear staining. RNA FISH was performed according
to the protocol reported by Tripathi et al. (26). To detect
MALAT1 RNA, cells were rinsed briefly in PBS and then fixed
in 4% formaldehyde in PBS (pH 7.4) for 15 min at room tem-
perature. The cells were permeabilized in PBS containing 0.5%
Triton X-100 and 5 mM VRC (New England Biolabs) on ice for
10 min, washed with PBS 3 � 10 min, and rinsed once in 2�
SSC prior to hybridization. Hybridization was carried out using a
nick-translated cDNAprobe (AbbottMolecular) in amoist cham-
ber at 37 °C for 12–16 h according to the manufacturer’s instruc-
tions. After RNA-FISH, cells were again fixed for 10 min in 2%
paraformaldehyde, and immunofluorescence staining was per-
formed as described above. Fluorescence images were acquired
with a confocal laser-scanning microscope (IX81/FV1000, Olym-
pus) using a�100, 1.40 numerical aperture objective or a confocal
laser-scanning microscope (LSM510META, Carl Zeiss), and the
images were processed using ImageJ (National Institutes of
Health) and Zeiss 3D software. Quantification of the colocaliza-
tion coefficients, derived from the measured pixel overlaps
betweenWTAPorMALAT1andSC35,wasperformedwithZeiss
LSM510 META colocalization analysis software using 20 inde-
pendent single-cell images.
RNA Co-immunoprecipitation (RIP) and Quantitative

RT-PCR—RIP was performed based on a ChIP protocol.
HUVECs were trypsinized, centrifuged, and washed with PBS.
Cells were resuspended in 5 volumes of hypotonic buffer (10
mMHEPES (pH 7.9) at 4 °C, 1.5 mMMgCl2, 10 mM KCl, 0.2 mM

PMSF, protease inhibitor mixture, RNAsin) and incubated for
10min on ice. Suspended cells were homogenized by eight pas-
sages through a 21-gauge needle, and the nuclei were collected
by centrifugation for 15 min at 3000 rpm and cross-linked with
4% paraformaldehyde in PBS for 10 min. After neutralization
with 0.2M glycine, cellswere collected, resuspended in SDS lysis
buffer (10 mM Tris-HCl, 150 mM NaCl, 1% SDS, 1 mM EDTA
(pH 8.0), protease inhibitor mixture, RNAsin), and sonicated
(Sonifier 250, Branson; 4 min, 60% duty, output level 4). The
sonicated solution was diluted with ChIP dilution buffer (20
mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100) and used for IP, and 1% of the starting materials were
used as the input. An anti-WTAPantibody (H1122) boundwith

Protein G magnetic beads was used. After IP, samples were
reverse cross-linked, total RNA was extracted using TRIzol LS
(Invitrogen) and treated with RNase-free DNase I (Promega),
and then RT-PCRwas conducted using randomhexamer prim-
ers following the manufacturer’s instructions (Invitrogen).
RNase Protection Assay—The RNase protection assay was

performed using an RPAIII ribonuclease protection assay kit
(Ambion) according to the manufacturer’s protocol. The
WTAP cDNA fragment was amplified from the total HUVEC
RNA by RT-PCR. The amplified cDNA was cloned into the
pCRII vector (Invitrogen), verified by sequencing, and used as
the template for a riboprobe.
Statistical Analysis—All experiments were performed amin-

imum of three times. Data points represent the mean � S.D.
calculated from multiple independent experiments. Statisti-
cally significant differences were calculated by using either the
unpaired t test or analysis of variance and Tukey-Kramer mul-
tiple comparison tests with Statcel3 software (OMS Publishing
Inc., Saitama, Japan). p values less than 0.05 were considered
significant.
All of the primers used in this study are listed in supplemen-

tal Table S2.

RESULTS

Identification of the WTAP Complex Components—To char-
acterize the role of WTAP in the cellular machinery, we puri-
fied WTAP and its interacting proteins from HUVEC extracts
by immunopurification using three specific monoclonal anti-
bodies against human WTAP and performed shotgun pro-
teomics. We generated three monoclonal antibodies. H1122
andH1137 recognize the C terminus of the humanWTAP pro-
tein, whereas Y6828 was generated against the N-terminal
sequence of the human WTAP protein corresponding to aa
1–50 (Fig. 1A; see “Experimental Procedures”). The specificity
for WTAP was tested by immunoblotting (Fig. 1B). Endoge-
nous WTAP corresponding to a �50 kDa band was detectable
by all three antibodies and disappeared after WTAP knock-
down with siRNA against WTAP. These antibodies were
conjugated to protein G magnetic beads and used for
immunopurification.
The immunopurification of the native protein complexes

was based on a highly sensitive immunoprecipitation system
(24). WTAP was immunoprecipitated effectively by each anti-
body but not with the antiviral protein antibody K7124, which
was used as a negative control (Fig. 1C). The nonspecific bands
observed in the immunoblot performed with H1137 (Fig. 1B)
were undetectable in the immunoprecipitates obtained with
H1137 (data not shown). From the results of the protein stain-
ing of the purified fractions, the purification quality was
regarded as sufficient to carry out shotgunproteomics (Fig. 1C).
The proteins in the immunoprecipitates were digested in solu-
tion, and the resulting peptides were identified using high
performance liquid chromatography combined with tandem
mass spectrometry (LC/MS/MS). WTAP was identified with
approximately a 70% sequence coverage in all three samples
(supplemental Table S1). The overlapping binding candidates
that were isolated with all three of the anti-WTAP antibodies,
but not with the negative control antibody K7124, included the
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Virilizer homolog, zinc finger protein KIAA0853, Hakai,
mRNA export cofactor RBM15, and the SR-like proteins
BCLAF1 andTHRAP3 (Fig. 1D).Vir has been reported to inter-
act with fl(2)d both genetically and physically inDrosophila (10,
12, 13). The presence of Virilizer homolog in the purified frac-
tions verified the biological relevance of the WTAP complex.
Gene ontology analysis of the identified proteins revealed a high
level of enrichment of the interacting proteins in terms of RNA
processing, such as RNA splicing and translation (Fig. 1E).
These proteins were also isolated in experiments using HeLa

cells with an H1122 antibody (supplemental Table S1), indicat-
ing that these complexes are not exclusive to HUVECs.
We next examined the interaction between WTAP and one

of the interaction candidates, Hakai (also known as CBLL1),
which is a C3HC4-type RING finger containing E3 ubiquitin
ligase that mediates ubiquitination of the E-cadherin complex
(27). In addition to its role in cell-cell contact, Hakai has
recently been shown to promote cell proliferation inDrosophila
embryo (28) and mammalian cells and to enhance the RNA-
binding ability of polypyrimidine tract-binding protein-associ-
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FIGURE 1. Immunopurification of the WTAP binding proteins using three anti-WTAP monoclonal antibodies. A, three specific monoclonal antibodies
against WTAP were generated. The recognition region of each antibody is indicated with a heavy line. B, specificity of anti-WTAP antibodies. Whole lysates of
HUVECs were subjected to immunoblot analysis using H1122 and H1137 antibodies, whereas nuclear extracts were used for Y6828. The arrow indicates the
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antibody. The significant enrichment of functional biological processes is shown along with the p value.
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ated splicing factor (29). Hakai contains a RING finger (aa 106–
148) and a phosphotyrosine-binding domain (aa 148–206)
called the Hakai Tyr(P)-binding (HYB) domain, as character-
ized by biochemical and crystal structural analyses (30), and a
proline-rich domain in the C terminus. The RING finger
domain of Hakai is required for the regulation of cell prolifera-
tion (29). Thus, the interaction of Hakai with WTAP was con-
firmed using the Hakai mutants (Fig. 2A). The use of several
different Hakai mutants showed that the Hakai mutant lacking
the RING finger (i.e. Hakai-delRING) did not interact with

WTAP (Fig. 2A), suggesting that the interaction between
WTAP and Hakai is involved in cell cycle regulation.
Wenext generated tetracycline-inducibleHEK293 stable cell

lines expressing a V5-tagged Hakai or Hakai-delRING, respec-
tively, and confirmed the nuclear localization of both proteins
(Fig. 2B). Then we isolated the interacting proteins using an
anti-V5 antibody (Fig. 2C). Interestingly, WTAP and its inter-
acting proteins that were mentioned above, such as Virilizer,
KIAA0853, BCLAF1, THRAP3, RBM15, FMR1, FXR1, FXR2,
and MTA70 (N6-adenosine methyltransferase 70-kDa sub-
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unit), were isolated using Hakai-V5 but not with Hakai-
delRING-V5 (compare columns 8 and 9 in Fig. 2D and supple-
mental Table S1). This shows that WTAP and its interacting
proteins form a complex with Hakai through the RING finger
domain.
The WTAP Complex Transiently Interacts with General

Splicing Regulators—Recent studies have shown that a combi-
nation of chemical cross-linking, affinity purification, andmass
spectrometry analysis provides a direct method of determining
stable, weak, or transient protein-protein interactions with
high confidence (31, 32). Formaldehyde has been routinely used
as an effective cross-linker that forms covalent bonds between
proteins, nucleic acids, and other reactive molecules. In an
effort to capture the more transient protein-protein and/or
RNA-dependent interactions, we purified WTAP-interacting
proteins from HeLa cells with the H1122 antibody after para-
formaldehyde cross-linking (Fig. 2E). The purified complexes
were reverse cross-linked and identified by shotgun proteo-
mics. General splicing regulators, including heterogeneous
nuclear ribonucleoprotein, SR proteins, and small nuclear ribo-
nucleoproteins as well as the proteins described above, were
enriched among the proteins cross-linked to WTAP (Fig. 2D,
columns 5 and 7, and supplemental Table S1), whereas only
WTAPwas identified from the cross-linked (�) IP fraction, due
to a series of stringent washing steps (compare columns 6 and 7
in Fig. 2D). These results indicate a transient and/or RNA-de-
pendent interaction of WTAP with the splicing machinery.
The WTAP Complex Is Required for Cell Proliferation—We

next examined the effect of the respective depletion of the
major components Hakai, Virilizer, KIAA0853, BCLAF1,
THRAP3, and RBM15 on cell proliferation in HUVECs.
BCLAF1 and THRAP3 were depleted together due to their
sequence similarity and possible functional redundancy (Fig.
3A). We have shown previously that WTAP reduction leads to

growth inhibition and G2 phase accumulation in the cell cycle
(17). As shown in Fig. 3B, control siRNA-treated cells grew
moderately for the first 48 h after siRNA transfection and then
increased 7-fold in cell number by 72 h. In contrast, WTAP,
Hakai, Virilizer, KIAA0853, RBM15, or BCLAF1/THRAP3
siRNA-treated cells exhibited growth inhibition, as evidenced
by the evidently reduced increase in cell number. Moreover,
flow cytometric analysis revealed that WTAP, Hakai, Virilizer,
KIAA0853, RBM15, or BCLAF1/THRAP3 siRNA-treated cells
exhibited a significantly higher proportion in the G2 phase than
control cells (Fig. 3C), providing further evidence of their func-
tional relationship in cell cycle regulation.
WTAP Localizes to Nuclear Speckles through an Interaction

with BCLAF1/THRAP3—The SR-like proteins BCLAF1/
THRAP3 as well as WTAP have been shown to reside in inter-
chromatin granule clusters (16) and also in affinity-purified
mRNP complexes (33). Thus, we examined the cellular local-
ization of WTAP and BCLAF1/THRAP3 by immunofluores-
cence analysis. When HUVECs were stained with an anti-
WTAP antibody (Y6828), a strong signal was observed in the
nuclear speckles as well as the nucleoplasm (Fig. 4A). The
speckle distribution pattern was overlapped with the nuclear
speckle marker SC35. Similar results were obtained from the
immunofluorescence using an anti-BCLAF1 or anti-THRAP3
antibody together with anti-SC35 (Fig. 4A). Furthermore, we
examined the cellular localization of the other components of
the complex and found that Virilizer, KIAA0853, Hakai, and
RBM15 also localize to nuclear speckles and the nucleoplasm
(Fig. 4A). Next we confirmed the colocalization of WTAP and
BCLAF1 or THRAP3 in the nucleoplasm and nuclear speckles
(Fig. 4B). Then we examined the effect of the depletion of
BCLAF1 and THRAP3 on the localization of WTAP. Interest-
ingly, we found that the depletion of BCLAF1 and THRAP3
resulted in a decreased nuclear speckle distribution of WTAP
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(Fig. 4C), although the nuclear speckles were still present, as
indicated by the speckle localization of SC35 (Fig. 4D). Colocal-
ization analysis usingZeiss LSM510METAcolocalization anal-
ysis software also confirmed the reduced speckle localization of
WTAP by BCLAF1/THRAP3 depletion (Fig. 4E). These find-
ings indicate that BCLAF1/THRAP3 facilitates the nuclear
speckle localization of WTAP. Nuclear speckles are highly
dynamic subnuclear domains enriched with pre-mRNA splic-
ing/processing factors (34) and the long nuclear-retained regu-

latory RNA, MALAT1 (35, 36). It has been reported that
MALAT1 modulates the distribution and phosphorylation of
splicing factors in nuclear speckles and regulates alternative
splicing and cell cycle progression (26, 37, 38). To examine the
interaction between WTAP and MALAT1, we performed RIP
analysis using the anti-WTAP antibody H1122 followed by
quantitative PCR. Significant enrichment of MALAT1 in the
immunoprecipitates treated withH1122was observed, indicat-
ing that WTAP interacts with MALAT1 (Fig. 5A). We further
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examined the nuclear localization of MALAT1 by RNA-FISH
in the presence or absence of BCLAF1/THRAP3. As shown in
Fig. 5B, MALAT1 was detected in the nuclear speckles with
SC35 and the nucleoplasm in control cells, consistent with a
previous report (37). UnlikeWTAP, the speckle distribution of
MALAT1 was unchanged upon the knockdown of BCLAF1/
THRAP3 (Fig. 5, B and C).
The WTAP Complex Autoregulates Alternative Splicing of

WTAP Pre-mRNA—While investigating the effect of the deple-
tion of WTAP-interacting proteins by siRNA, we found that
WTAP protein expression was up-regulated in BCLAF1/
THRAP3, Virilizer, KIAA0853, and Hakai siRNA-treated cells
(Fig. 6A). WTAP has two transcript variants due to alternative
splicing and alternative polyadenylation, one of which encodes
the shorter isoform, ending just after exon 6, referred to as
KIAA0105. It includes the retained sequences of intron 6, lead-
ing to a “bleeding” exon with immediate translation termina-
tion. The stop codon is skipped when the 3� splice site of exon 6
is used, generating an mRNA that encodes the full-length
WTAP protein (Fig. 6B). To determine whether the up-regula-
tion of WTAP protein expression was due to alternative splic-

ing, we performed RNase protection analysis using riboprobes
that were able to detect the isoforms separately. Both the
shorter isoform (�70%) and longer isoform (�30%) were pres-
ent in control cells (Fig. 6B). The BCLAF1/THRAP3, Virilizer,
KIAA0853, and Hakai siRNA-treated cells displayed a signifi-
cantly higher ratio of the longer isoforms compared with the
control cells (p 	 0.05), suggesting that the WTAP complex
acts as a repressor of WTAP gene splicing in a concentration-
dependent manner, and the resulting splicing alteration is
probably responsible for the up-regulation of WTAP protein
expression in the cells depleted of each of the respective pro-
teins in the complexes. To examine the interaction between
WTAP andWTAP pre-mRNA,we performed RIP analysis. Sig-
nificant enrichment of WTAP in the immunoprecipitates with
H1122 was observed (Fig. 6C, p 	 0.05), suggesting the direct
regulation of alternative splicing of WTAP pre-mRNA by the
complex.

DISCUSSION

In the present study, we identified the WTAP complex,
which is involved in RNA processing and cell cycle, using a
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highly sensitive shotgun proteomics. To detect the intrinsic
complex, we generated several monoclonal antibodies against
WTAP. The three clones we used in the present study recog-
nize the N-terminal or C-terminal portions of the WTAP pro-
tein, which could compensate for any loss of a complex by one
clone due to a covering of the epitope by binding proteins. The
specificity of the interactionwithWTAPwas further supported
by the observation thatWTAP and its interacting proteinswere
isolated with Hakai-V5 but not with Hakai-delRING-V5. This
also probably indicates that these proteins forma large complex
with WTAP and act as the complex. From the results of serial
proteomic analyses using HUVECs with three monoclonal
antibodies, HeLa cells, and HEK293 cells expressing Hakai-V5
or Hakai-delRING-V5, it was determined that Virilizer,
KIAA0853, Hakai, BCLAF1, THRAP3, and RBM15 are the
major components of the WTAP complex (Fig. 2D).
In addition, we demonstrated a transient interaction of the

WTAP complexes with the splicing machinery using a com-
bined cross-linking and immunopurification method. This
method was confirmed to be effective in both purifying a pro-
tein of interest and also identifying the transiently associated
protein complexes in cultured mammalian cells. From these
proteomic analyses, the binding candidates to WTAP also
include FMRP, the FMR1 (fragile X mental retardation 1) gene
product, and its autosomal paralogues, FXR1 and FXR2 (fragile
Xmental retardation syndrome-related protein 1 and 2, respec-
tively), ERH (enhancer of rudimentary homologue), and
MTA70 (Fig. 2D). Fragile X syndrome, the most common her-
itable X-linked neurodevelopmental disorder, is caused by the
loss of function of FMRP. FMRP has been implicated in trans-
lational control, associating with actively translating polyribo-
somes in ribonucleoprotein particles (reviewed in Ref. 39). ERH
is a highly conserved protein that has been implicated in
nuclear gene expression (40, 41) and cell growth (42–44).
Recent studies have reported that ERH-depleted cells show
severe chromosome misalignment with a loss of kinetochore
localization of CENP-E (centromere-associated protein E) (45,
46). ERH interacts with spliceosome proteins and is required
for themRNA splicing of CENP-E (45).MTA70 is the S-adeno-
sylmethionine-binding subunit of human mRNA:m(6)A
methyltransferase, an enzyme that sequence-specifically
methylates adenines in pre-mRNA. The biological significance
of this modification remains unclear. Interestingly, plant MTA
is potently expressed in dividing tissues and has been shown to
bind to FIP37, a plant homologue ofWTAP (47). Thus, in addi-
tion to mRNA stabilization and alternative splicing regulation,
our proteomic data suggest that WTAP dynamically takes part
in several posttranscriptional processes by forming a protein
complex with these components.
We further demonstrated the interaction of WTAP and the

non-coding RNAMALAT1 by RIP analysis. The interaction of
WTAPwithMALAT1may contribute to the formation and/or
modification of the complex in nuclear speckles. Upon the
knockdown of BCLAF1/THRAP3, the nuclear speckle localiza-
tion ofWTAP became dispersed, whereas the speckle distribu-
tion of MALAT1 persisted. It is possible that the interaction of
WTAP with MALAT1 may be reduced in the absence of
BCLAF1/THRAP3.

It has been proposed that RNA processing is associated with
cell cycle regulation, as demonstrated by the fact that several
pre-mRNA splicing mutants (prp) from temperature-sensitive
Schizosaccharomyces pombe strains have cell division cycle
defects (48). A growing body of evidence has indicated a func-
tional connection between RNA splicing and cell cycle regula-
tion (49–51). Although the precise mechanisms mediating the
role of splicing and/or spliced variants in the cell cycle are not
well understood, it is believed that specific splicing factors are
involved in the control of the splicing of cell cycle-related genes,
especially the alternative splicing of apoptotic regulators (52)
and/or genomic stability (53). The prototypic SR protein splic-
ing factor SF2/ASF is up-regulated in various human tumors
and is a potent oncoprotein, whose overexpression by as little as
2-fold is sufficient to transform rodent fibroblasts (51). Con-
versely, the knockdown of SF2/ASF induces G2 cell cycle arrest
and apoptosis, presumably through the accumulation of DNA
double strand breaks (54). Similarly, the loss of the SR protein
SC35 in mouse embryonic fibroblasts induces G2/M cell cycle
arrest and genomic instability (55).Moreover, it is reported that
SRp20 and polypyrimidine tract-binding protein are highly
expressed in epithelial ovarian cancer, and the knockdown of
those factors leads to growth arrest and apoptosis (50). We
demonstrated that the depletion of each of the respective
WTAP complex components, namely WTAP, Virilizer,
KIAA0853, BCLAF1/THRAP3, Hakai, and RBM15, resulted in
cell cycle arrest at G2 phase, suggesting that the responsible
mechanism for the cell cycle progression is carried out by this
protein complex. Genome instability was not observed in
WTAP knockdown cells examined with immunofluorescence
of phosphorylated�H2AX to detect induced foci that had accu-
mulated on broken DNA (data not shown).
In the regulation of WTAP transcripts by the WTAP com-

plex, the data indicate that the WTAP complex probably pre-
vents the 3� splicing of intron 6 and/or promotes alternative
polyadenylation of intron6 so as to produce a shorter isoform
that does not encode the full-length protein, thereby negatively
controlling the WTAP protein expression. In Drosophila, SXL
regulates the splicing of Sxl (56–58), tra (7, 59, 60), and msl-2
RNA (61, 62) via a blockade that occurs by binding to the
poly(U) sequences present at the 5� splice site and/or the poly-
pyrimidine tract of the 3� splice site. There might be such a
mechanism that is conserved in Drosophila and mammals in
the alternative splicing regulation effected by WTAP.
In conclusion, we have identified and characterized the

WTAP complex, which is involved in both alternative splicing
and cell cycle regulation. Additional studies, such as a compre-
hensive analysis of the binding sites for the complex in RNA
transcripts, will help to elucidate the detailed molecular mech-
anisms of the alternative splicing and cell cycle regulation car-
ried out by the WTAP complex.
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